148 research outputs found

    Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes

    Full text link
    Lying on the heart of intelligent decision-making systems, how policy is represented and optimized is a fundamental problem. The root challenge in this problem is the large scale and the high complexity of policy space, which exacerbates the difficulty of policy learning especially in real-world scenarios. Towards a desirable surrogate policy space, recently policy representation in a low-dimensional latent space has shown its potential in improving both the evaluation and optimization of policy. The key question involved in these studies is by what criterion we should abstract the policy space for desired compression and generalization. However, both the theory on policy abstraction and the methodology on policy representation learning are less studied in the literature. In this work, we make very first efforts to fill up the vacancy. First, we propose a unified policy abstraction theory, containing three types of policy abstraction associated to policy features at different levels. Then, we generalize them to three policy metrics that quantify the distance (i.e., similarity) of policies, for more convenient use in learning policy representation. Further, we propose a policy representation learning approach based on deep metric learning. For the empirical study, we investigate the efficacy of the proposed policy metrics and representations, in characterizing policy difference and conveying policy generalization respectively. Our experiments are conducted in both policy optimization and evaluation problems, containing trust-region policy optimization (TRPO), diversity-guided evolution strategy (DGES) and off-policy evaluation (OPE). Somewhat naturally, the experimental results indicate that there is no a universally optimal abstraction for all downstream learning problems; while the influence-irrelevance policy abstraction can be a generally preferred choice.Comment: Preprint versio

    Dynamics in direct two-photon transition by frequency combs

    Full text link
    Two-photon resonance transition technology has been proven to have a wide range of applications,it's limited by the available wavelength of commercial lasers.The application of optical comb technology with direct two-photon transition (DTPT) will not be restricted by cw lasers.This article will further theoretically analyze the dynamics effects of the DTPT process driven by optical frequency combs. In a three-level atomic system, the population of particles and the amount of momentum transfer on atoms are increased compared to that of the DTPT-free process. The 17% of population increasement in 6-level system of cesium atoms has verified that DTPT process has a robust enhancement on the effect of momentum transfer. It can be used to excite the DTPTs of rubidium and cesium simultaneously with the same mode-locked laser. And this technology has potential applications in cooling different atoms to obtain polar cold molecules, as well as high-precision spectroscopy measurement.Comment: 7 pages, 7 figure
    • …
    corecore